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PROPERTIES OF A REPRESENTATION OF
A BASIS FOR THE NULL SPACE

by

Philip E. Gillt, Wdter Murrayt, Michael A. Saunderst,

G. W. Stewartt and Margarct H. Wrightt

i ABSTRACT

Given a rct.utgi natrix A(x) that depends on the independent variables x, many constrained
optimization in(thods involve computations with Z(z), a matrix whose columns form a basis for
the null space AT(x). When A is evaluated at a given point, it is well known that a suitable
Z (satisfying AZ = 0) can e obtained from staudard matrix factorizations. However, Coleman

and Sorensen have recently shown that standard orthogonal faetorization methods may produce
orthogonal bases that do not vary continuously with x; they also suggest several techniques for
adapting these schemes so as to ensure continuit.y of Z in the neighborhood of a given point.

Tis gaper is an extension of an earlier note that defines the procedure for computing Z.

Here, we first describe how Z can be obtained by updating an explicit QR factorization with
Householder transformations. The properties of this representation of Z with-respect to pertur-
bations in A are discussed, inchlding explicit bonds on the change in Z. .then introduce
regularixurd Househohler transformations, and show that their use implies continuity of the full

matrix Q. The convergence of Z wid Q under ,ppro)ri-Lte assumptions is then proved. Finally,
W indircat4vhy the chosen form of Z is conveni,,jit in certain nethods for nonlinearly constrained

optindiwation. (
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A Basis for the Null Space

1. Introduction

Given an n x n matrix A of rank m (m < n), many constrained optimization methods involve

computations with a (non-unique) matrix Z whose n - m columns form a basis for the null space

of AT (i.e., such that ATZ = 0). Typically, A represents the Jacobian of a set of constraints,

and the eleicnts of A are smooth functions of an independent variable z (x E R ,). Attention

has recently been focussed on the continuity properties of the associated Z, which turn out to

be crucial in proving local convergence for certain methods. For example, in Coleman and Conn

(1982, 1984), an essential assumption is that small changes in z lead to small changes in Z.

It is well known that certain factorizations of A provide stable and efficient means for com-

puting Z. For example, given the QR factorization of A,

A=Q (R),(1)

where Q is an n x n orthogonal matrix, and R is an m x m non-singllar upper-triangular matrix,

Q may be partitioned as
mn n-rn

Q=( Y z). (2)

Coleman and Sorensen (1984) observed that the standard method of computing the QR

factorization through Householder matrices may not provide a continuous representation of Z(X).

They proposed several alternative strategies for ensuring a continuous Z, based on removing the

discontinuity associated with the sign that (efines each Householder transformation. Gill et al.

(.1983) present an updating khnique that provides a continuous representation of Z. Byrd and

Schnabel (1984) note that inherent discontinuities exist if Z is defined as a function of X, except

in certain special cases.

This paper is an extension of Gill et al. (1983). The matrix Z is a submatrix of an explicit

orthogonal matrix Q, which is obtained by updating the QR factorization. In Section 2, we sum-

marize the procedure for computing Z aind Q. In Section 3 we give explicit bounds for the change

iii Z resuilting from pertuirbations in z, and show that Z is comtinuouis in the neighborhood of a

point where A has full rank. We then introduce the class of regularize(d householder trausfor-

nialions, allalyze I.'Ie effect or pirturlations in z on, tlh full matrix Q, amd give a similar proof

of continuity. In Section 4, we prove that Z approaches a limit when comuiuted at at (luence of

points (xk I converging sufliieittly fast to a suitable point z*(and similarly for Q when regularized

Householder transformations are used). Numerical examiples are given in Section 5 to illustrate

soune of the results. Finally, in Section 0 we discuss the chosen representation for Z in the context

of algorithnis for constrained optinmzation.

2. Representation and computation of Z

It is essential to distinguish between the theoretical definition of Z as a matrix whose columns

have specified properties, and its realization as a data structure with which computations are

".....'-"



2 A Basis for the Null Space

performed. Although a "matrix" may be used as a pedagogical convenience in describing an

Mgorithm, it will not necessarily be represented as an explicit two-dimensional data structure

within an implementation. For example, the standard Householder method for computing the

QR factorization (1) (see, e.g., Stewart, 1973) results in a special sequence of m Householder
transformations that are stored in compact form (each represented hy a vector). This implicit

form of Q i.- acceptable in many contexts - in particular, most optimization algorithms do not

require the elements of Z, but rather only the ability to compute products involving Z and its

transpose. With an implicit Q, operations with Z are performed by applying the sequence of

transformat ions (not by explicit matrix multiplication).

In contrast, the procedure to be described obtains Z from a QR factorization in which Q

is stored explicitly. We assume that A(z) is the .lacobian of a nmixture of linear and nonlinear

constraints. Accordingly, let the rn colunms of A(z) be partitioned into two groups: the first m,

columns (denoted by A,,, mill termet the constant columms) are indeIendent of x, and correspond

to the gradicnts of linear constraints; the last mN columns (denoted by AN(x), and termed the

variable columns) vary with z, and correspond to the gradients of nonlinear constraints. Thus,

A and R in 11) have the forms

A = (A, AN) and R= ( R,. T)
0 R , '

where R,. and RN are tpper-triangular. The factorization (1) of A is assumed to be available,

with Q stored explicitly. Note that

, = Q(3)

Now consider a different matrix A, given by

A= (A, AN). (4)

It follows from (3) that

0 v

where V is (n -- in) x in,. ThIes, Q .riamgidarizes the first in, coluhms of A, and the QR
factorizatioi of A can be obtained by trimigularizing V. In order to perforrm this computation,

w, apply in, updat(-, to the QR factorization (3) of A, while the colmns of AN are added one

at a time. The crcial point about this approach is that the factorix, ation is updated after each

coimni is added. Thus, after the i-th column of AN has been processed, an explicit orthogonal

matrix is available that t.riamgularives columims 1 through mnL + i of A.
To describe the work associated with each update, we consider an n x (j - 1) matrix C whose

QR factorization is given by

(R). 
(5)



A Dasis for the Null Space 3

Let C - ( c ) for some vector c. Then, from (5),

:0,- (0 V),0
We now construct the Householder transformation H that leaves t unaltered and annihilates all

but the first element of v. If

where v is the j-th diagonal element of 0 , then

1
Hif(v) = I - ~uuT I

where
U = (0,...,0, v+sinvlvl ) lt 2  (7)

(Unless otherwise stated, 11 I denotes the Euclidean vector norm or the induced matrix norm.)

We then have A

(0 0

where p = -sign(,)llvII and
Q=QH.. (8)

The following sloild be noted: only coltinis j through n of Q are altered by Hk; II, depends

only on v (uot on t); anid l I(nv) = l13(v), where a is iuiy nion-zero scalar.

In order to obtain the factors of A (4), the above procedure is repeated r, times, beginning

with C = A,,, 1? = RL, and Q = Q, each column of AN then tak( the role of c in (6). With this

approach, a "current" orthogonal matrix (which, for simplicity, we shall denote by (Q) is always

available after each colunin is added. Because each Householder transformation is applied .to

C, before the iext. tramsformnal;ion is constri icted, ) reprsen Is all )revious lrammsforma.ions. By

ap)plyilg () to dii' new columin wu the, firsl. sI) iii ('hi u)date, the .(,ir(t, is to apply the entire

sc'U 1(i(c' t1I" Iiii-whower Iraiisforiatious. Ther-for(, each Householder itlrix is iiel aI)l~i(l to

the rniajinng (umitransforiuid) colinns of AN, iii contrast to the stal(lard householder procedure.

Completion of a single ul)date involves three steps: (i) formation of CjTc to obtain v, (ii) deft-

U.ition of u, and (iii) application of the Householder transformation to 4. The desired factorization

of A requires mN updates, and tihe final Q satisfies

Or H . HIQ .  (0)

The total work required to obtain Q and R is of the order of 2 nmn (n - mL) + nm, (n - m,)

ol)erations.
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3. Perturbation analysis of Z and Q

In this section we analyze the effect of the pr6cedure of Section 2 when applied at points "near"
a point : where A(:i) has full rank. Roughly speaking, the desired continuity properties involve
showing that small changes in x lead to small changes in Z. The proof is complicated by the fact
that the class of Householder transformations does not include the identity matrix or any matrix
near it. Therefore, considering (9), the full matrix Q is not continuous. However, it turns out
that small changes in z do lead to small changes in thc colunms of Z. Explicit bounds on the
perturbation in Z are derived in Section 3.1.

Although this result is satisfactory for methods in which only Z is required, continuity of all
of Q is useful in other contexts - for example, when an explicit representation of the range space

is used in an update. To extend the continuity result to all of Q, in Section 3.2 we introduce
the class of regularized Householder'matrices (which does contain the identity), and show that

bounds similar to those for Z in the standard case can be obtained for all of Q when updates are
performed with regularized Householder transformations.

3.1. Perturbation in Z. For simplicity, in this section we assume that nL = 0, i.e., that all
columns of A are variable; the analysis can be applied in a straightforward manner when constant
colunms are present. Given any c. > 0 and the associated neighborhood of points i + 6z, where

11641 < C., (10)

we analyze the computation of Z(i + 6xz) from Z(i) using the procedure of Section 2.
Let A denote A(i), and A denote A(ai + bc), with a similar convention for Q and Z. The

QR factorization (1) of A is assumned to be given. Since A is a twice-continuously differentiable
function of x, given any ( > 0, there exists (, such that (10) implies

A = A + 6A, where I1All <_ e. (11)

The existing QT "almost" triaigularizes A, i.e.,

QTARA=( )+E (12)

where IEll ! (. It order to t.riangularize R, the procedure or Section 2 constructs a special
"(iw1ence of in llmashohder transforimations {IIt,. .. . .. ). Thus, we have

A=Q(R), with QT=H... HQT (13)

The jth transformation H, is constructed so that its application to a vector v does not alter

coumponents I through j - 1, and annihilates components j + I through n.
The matrix Z corresponding to A contpriset' the last n - in colunns of Q. To examine the

ch;augis in this part of Q, we introduce a sequence of diagonal miatrices {Di), j = 1,..., m, with

i n-i
D, -diag(0,...,0, 1,..,1).
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Then, from (2),

QD i (o Z).

Since T  H,.. - I)QT

and IIQII = 1, we obtain the following bound for the change in Z:

119 - Z1l IID.(I - H. ... H1 )If. (14)

To derive a bound for the right-hand side of (14), observe that the special structure of H
iiplies that

DiHi- D= iDi-. (15)

Using (15), the fact that IDjHj 11 _ 1 and the identity

DW-( - Hi-... HI) --DAI - Hj) + DjS;(1 - Hit ... Hi),

we obtain

[[Di(I - Hi ... U)II = [[VP(I - HA) + DiHjDi_i(I - Hi-1 ... U)[I

< [IDN (- HAII + IlDi.-t(I - Si-I ... HI)I[ (16)

Therefore, if we develop a positive sequence {q, } such that

7ou=O and _%,i, ".i+jDj(I- )II, j =1,...,m, (17)

it follows fromu (14) and (16) that

112- Z11 < M. (18)
The qtiantity needed to. define {17} is an upper bound on IIDi(I - Hj)II, which we shall

obtain by exain,iug the structure of the j-th Householder matrix H i. In order to simjplify this

process, we prove the following lenia, which shows Chat the s iience of householder matrices

neieded Io Cri~uigularize a given matrix is ..affecteid by lmtuldtiplication by an ulpper-tri~ugular

inatrix.

Lemna 1. Let

rrpremvnt the reduction to triangular form of the fill-rank matrix A by Householder traw'forma-
tions as describid in Section 2. Let S be a nonsingular npper-trimigilar matrix, and let A' = AS.
If if 

HP ... H (R*)

• " ''e. .,e'' ,° .,. , . -,"" ' " "''"-e .', ' Y''•" "'' e. " ' ". . .,"o ".". .,.". '', ", ""' .... _ . .'M,; 0'' '. '.•.-.. .' " .., . ." -.'..;. '
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represents the triangularization of A' by Householder transformations, then

Hi=H , i =

Proof. The proof is by induction. Iet ai denote the ith column of A, and similarly for a' and A'.

To begin the induction, note that since a is a nonzero multiple of a,, it follows that H1 = I4.

Then suppose, ihuctively, that Hi = Hf, i = 1,... , k - 1. At the kth step, H is determined

by the last n - k + 1 components of Hk-.i ... Hak, and likewise H is determined by the last

n - k + 1 components of Hk- ... Hj a'. By definition of A' and our inductive hypothesis, we

have
Hk'-1 ... H' i = l'- I_ ... H'(sk,kak + sk--,kaI +.. + St,kal)

= Hk-1 ... Hi(qk,kak + sI.-,kak- + "". + si,kaj).

By construction of HA--I,.. , H1 , the last n - k + 1 components of Hk-l ... Ha , i < k, are

zero. Therefore, the last n - k + 1 components of Hk1_ 1"" HI'a' are a nonzero multiple of the

last n - k + 1 components of H1,I ... HlaA;, and it follows that HA = Hk. I

From (12), the matrix to be triangularized is

fi (R + E = WR,

where

Wand A =-ER 1 .(0

B'auise of Lemma 1, the set of transformiationis that triangtl.rize are the same as those that
tria|igtilarize W (a perturbation of the identity).

Let iri denote the matrix to be reduced at the j-th step, i.e.,

W - Hi -, ... HiW,

wli(r the first j - I coliims of Wj are already in upper-trimagular form. Let ti. denote the j-th

col'Iiiiti of W; let t, denote the first j - I compoliluts of to3 , wj its j-th rompollnnt, and 6i its

last v - j comtjponents, so that

(t T VT) with vT= (Vi, 1T). (20)

Thus, v, is the vector to be reduced at step j. From (7), the Householder vector ui is defined by

U= (o,...,o, + ( ,'). (21)

Note that

Vllvil < II5juill 211vi11. (22)
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Using norm inequalities and (22), we obtain

IID,(I - H)II = I 211I I __ 2 1161I < vII (23)

ll II5I2 - Iiu 112 5iu - Ill"

It follows immediately that the perturbation in components j + I through n of any vector to

after application of H i satisfies:

IIi(w - Hjw)lI 1 -i (24)

We now develop an upper bound for I1i'il1 and a lower bound for I1v"i. Let bi ,ienote the

norm of the j-th column of A (which, from (19), is also a bound on the norm of the vector of

subdiagonal elements in the j-th colum of W). Because Householder matrices are orthogonal,

the j-th column ivj' of Wj satisfies

1- 6i !5 Ii-Dil !5 1 + 6j. (25)

To obtain a lower bound for IIvil1, we repeatedly apply (24) and (25) to bound the perturba-

tion in components j through n of colunm j of WVi . Formally, let the set of positive values { jj},

j = 1,... ,m be defined as follows:

,1 = 1J, - 6, V.I+6)(6
,+ 6, i =(1,...,j-1.)

Then vj, the vector to be reduced at the j-th step, satisfies

IlJll >- . (27)

(We assue that liAll is sufficiently small so that eii remains positive.)

Since mii corresponds to the subdiagonal elements in column j of WIk, we defifie the sequence
{p~d, j= 1...m) as

pi,j I. I =  i,i 4- • . , , V2. + 6j ',.,j -. 28.= 64

It follows from (24) amd (25) that

IIt3,I Pu. (29)

Therefore, using (23), (27) and (29), we have

IIDA(J-H,)Il I¢ IIh!I
Di (I,- il

IIIJjII (30)

< V -j.
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Applying (30) to (17) and (18), we obtain the following bound:

jig - z !5< ( +... + I,_). (31)
61,1 C'.'.

This expression is intractable as it stands. However, when IIAll is small, we can obtain a

simple expression for the upper bound in (31). First, note that if bj < 1, then (26) implies that

Cj is of order unity for all j. It follows from (28) that the growth in pj,j is approximately linear,

i.e.,
3

t=1

Let

6 IIER-I1, (32)

so that 6b < 6 for all j; then

:5J jV216.

Substituting in the bound on IIZ - Z11 in (31), we obtain

IIZ -Z11 :_ -- m(m + 1) 6. (33)

Let a denote the smallest singular value of A. Since IIR- 111 < a-' and 6 < IIEIIIIR-'ll, it

follows from (33) that

11, - Z1l < pa '1I13l, (34)

where p depends only on m. As in standard error analysis, we highlight the dependence of the

bound on the condition number of A by rewriting (34) as

112 - Zl < p cond(A) GAIL- IIA II"

where cond(A) is the ratio of the largest to the smallest singular values of A.

The proof of mniform continuity of Z at. i is almost immediate. First, note that p and a are

ildepelndiit of hx. Second, recall that t - 0 as . -c 0. It follows directly front (34) that

lik 2 =z.II6~It -.0

The bound (34) is interesting because, although Z is not unique, the nill space itself (denote(

by Q) is. Let Q denote the null space of AT from (11). If we measure the distance between Q an(

by the norm of the difference of the projectors onto them, then Q and Q differ by a quantit

that is asymptotically bounded by a HEll. In Davis and Kahmli (1970), it is shown that ther

exists a rotation P such that PQ = , and III - P11 is minimal (in this case, approximatel

a 111Ell). Thus, the choice Z PZ would provide the "best" algorithm for updating Z. TI,

~ ~ A % . . . .* * .***- - - - - - - - - *-



A Basis for the Null Space Q

bound (34) is larger by a factor of order m 2 than the bound corresponding to the optimal choice of

rotation. However, for some matrices E, a-- 1 IEI may be a substantial overestimate of IIER- 1 11,

which may in turn be a substantial overestimate of bj for some j. This will be illustrated by

Example 2 in Section 5.

3.2. Regularized Householder transformations; perturbation in Q. Although the matrix

Z obtained using ordinary Householder matrices undergoes small perturbations in a neighborhood

of i, the same does not hold for Y (the first m cohumns of Q). In fact, the effect of applying

each set of transformations {Hj} is to change the signs of the columns of Y. Thus, no bound

analogous to (34) can be obtained for Y. However, the difficulty call be circumvented by defining

the regularized Houscholder transformation tj to be

j-.i

Hj =DjH, where D1  diag(1,...,1, -1, 1,...,1), (35)

i.e., H is H, with the sign of its j-th row reversed.

In this section, we derive a bound on IIQ - QIl where Q is obtained from Q by the procedure

of Section 2, but using regularized rather than standard Householder transformations. Because

the derivation of the bound is so similar to that for 1IZ - ZII, we simply highlight the major

differences.

The relationship analogous'to (16) for regularized Householder transformations is

II - ft3-... fill < III - M 1l + III-/i .-- iII.

Hence, if we derive a sequence {qj} such that

then

IIQ- QII 5 q-.
Lemma I appli(s to regularized Householler matrices, so that we need to consider only matrices

of the form W in (19).

The critical quantity to be determined is a bound on I - JIll. To illustrate the process,

c(n.1siler I fI I I - )I ll. k.sinig (20) and (21), ty will denote the vector Lo be reduced, alid

tie corr. sollding loimselolder vwctor u is given by

S -+ sign(vl)[[V)

By definition of fi1 , we have

Ilull2 - -U2U 2  ... U2U

I- H, j-U ...

U 1 U ~n  U2U n  ... "125

':;-';--;-;:-:. ..- . .;-.- ;;';-;@ :-?-- i) . ;.:-:-'"-;" :;.? :- .: : : : '. . ;. -.- ..- -.- "



10 A BD ai for the Null Space

The Frobenius norm of this matrix may be obtained by direct computation and bounded using

(22), giving
III- Rq1llp 252 1'11 < 2 I'l

hIull - DulLII
Since I" 112 < II" hIF, the following lemma follows immediately.

Lemma 2. Let f i be the regularized Householder transformation defined by (35), (20) and (21);

then

II - Il , ! l2 (36)

Exactly as for (24) through (31), we can then derive

(Note that this (liffers from (31) only in the constant multiplying the right-hand side.) When

I AD1 is small, we have the same form of bound as in (34), namely

11-- QII < pa- 1 lE I,

* where p depends only on m. Continuity of Q at i follows exactly as for Z.

4. Convergence of Z and Q

One reason for interest in the continuity of Z is in proving local convergence results for nonlin-

early constrained optimization methods that maintain estimates of the projected Hessian of the'

Lagrangian finiction (e.g., Coleiniu and Conn, 1984a, b). Hence, we now turn to the computation

of Z within an iterative method that generates a sequence {zk}, where Q II is Comutcd from

Qk using the procedure of Section 2.
We assume that {xk} converges to a point X* such that A(z*) has full rank. Thus, there

- exists an integer Kt such that for all k > K 1 , A(xAk) has full rank; we shall consider only such

. values of k. We further assume that

£ 'ik - 2*1 < +00.
k. 0

This implies that for any c > 0, there exists an integer K such that for all I > k > K > K1 ,

IIX, - Xi-,II +.. + IX+1 - XZ11 < . (37)

For a given value of ( in (37), we shall consider only values of the iteration count that exceed the

associated K.

The bound (34) shows that, for sufficiently large K, there exists a positive constmt M,

independent of k, such that for all k > K,

IZ,+ - ZkI < MIIzk+ -ZklI.

• . . . . .. . - . , • -o • ) - - % °% -. -. o' .. . * ,...% . . - .,*. o•o.o. . ' '..-. '. -.-....-. '.,-. .-.

. . . . oO o o o- o- . - o oo o* - + .- ) ) . .o . o... ,., =) .. . . . - . o o . + * .o o . . , .
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Therefore, we have for all I > k > K,

IIZ' - Zll < liz, - ZI- 1 11 +... + llZ+1 - Zkj

< M(jjX, - Z-Il +..- + ilXk+, - Xkll. (38)

Bccause of (37), the sum on the right in (38) can be made as small as desired by appropriate

choice of K, and hence flZI - Zk can be made as small as desired. Thus {Zk) is a Cauchy

sequence, and therefore converges to a limit Z* as {zk) converges to X*. We emphasize that the

limit Z * depends on the sequence {xA}.

If regularized Householder matrices are used to define Qk+j from Qk, exactly the same result

holds for the full matrix Q.

5. Numerical examples

In this section, we illustrate some properties of the method with two simple examples.

Example 1. Let x0 = (1,0, 1)T and X* = (0, 1, 2 )T. We define the function a(z) = z, and

consider the following sequence, which begins at x0 and converges to X* so as to satisfy (37):

x; 1 -(-I112)k
:.2 2- 1/2A:

With Q 1 I, the matrix Qo is the Householder matrix

.70711 0 -. 70711

Q01 0 1.
(-.70711 0 .70711

* For each k, Zk is the last two com7s of Q.7.

All comiputation was performed sing double-precision arithmetic on an IBM 3081, corre-
spoliung ton about 16 delimal digits of precision. All nmibers shown are rounded to five figures.

Al. steps 10 ad 11, where 1i.i, - I7JIll -z 2.1284 x 1) 3, we have

(~000437 -. 28042 -. 05088)

Q0 -. 80451 .85868 -. 25066
-. 44704 -. 42900 .12574

.000218 -. 28042 -. 05088)

Q = .89430 .85839 -. 25088 ,

.44748 -. 42958 .12530

which corresponds to lIZ11 - Z 1iofl - 8.1736 x 10 -.Note the change of sign in the first column

of Q.

-.

"a;- ..- *- . 'a, "". "%'""-,'* * ", " " - "a.,""" .,""" .""."" * ,*"- ,-"- .." .. "".', .,,,' -.- ' " ' . -"-. -".. •".,
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A sequence of orthogonal matrices was similarly generated for the following sequence

* which also begins at x0 and converges to X 1

Yk I - 1/2k  •
- 1/2k

Note that Q(yo) = Q(zo). However, all subsequent matrices differ for the two sequences.

In both cases, the Z matrices converge, but to different limits:

( 28042 -.959881
lim Z(Zk) = .85854 -. 25682h--oo -. 42927 .12541

(1371 
- .98I'

lir Z(p&) = .87749 -. 1.7326

-. 43874 .08663 J
The first column of the limiting matrix Q(X*) is ±(O, .89443, .4 4 7 2 1 )T .

For comparison, the Q matrix that would result from applying a standard Householder

reduction at z is given by

( 0 -. 89443 -44721
Q(X*) -. 8443 -. 4 .8

-. 447"1 .8 )
Example 2. The second example shows how the relationship betwee-n E mid R in (19) can

aff-ct the actual change il Z, ldthotgh the homid (34) remains unchauged. Let A be 6 x 3, with

R given by

1 10 .

1J

The! smallest singular value of R is of order unity. Consider a matrix E si'h that lIEJ = 0(1);

the.i (34) implies Chat the cha.ige in Z can be of order unity.

This bound is YAhievtl, for example, if E is given by

10- 7 10-7 1

10-7 10-7 1

since IIER-111 is of order unity, i.e., similar in magnitude to IIEIIIR-' 1 1. However, if

1 10 - 7  10 - 7

1 1-7 IO-7)
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then the perturbation in Z is of order 10- 7 (much less than the bound) because IIER-111
0(10-7 IIEIIIIR-ll.

6. Comparison with alternative procedures

In this section, we compare the procedure of Section 2 with an alternative technique for obtaining

an explicit matrix Z. We emphasize that an explicit Q is required in the most popular algorithms

today for solving constrained problems with inequality constraints. An implicit Q is suitable

if A changes only by the addition of columns. However, any other change to A can be made

efficiently only by access to an explicit Q. Inequality constraints are most often treated by posing

a quadratic programming (QP) subproblem with linearized (inequality) versions of the original

constraints (see Powell, 1983, for a survey of sequential quadratic programming methods). The

QP is solved by developing a working set A that undergoes the addition and deletion of columns

until it becomes the active set of the QP. Furthermore, if simple bound constraints are treated

separately from general linear constraints, the matrix A is also subject to the addition and/or

deletion of rows (see Gill et al., 1984a, for details of the update procedures).

The most obvious alternative to the method of Section 2 is to apply a standard Householder
procedure in which the Householder vectors are stored in compact form during the triangular-

ization; we shall refer to this as the implicit procedure. Assuming that the ml transformations

corresponding to constant columns of A are retained, the matrices ft and Q of Sect-on 2 can be

computed sing the stui(lard Householder procedure in mN (2nm,. -m,) operations to apply the

M,. fixed transformatios to A, and + m (n - m) operations to produce the desired tri-

angular form. The explicit matrix Q is then formed by multiplying the transformations together

in reverse order, which requires 2nm(n - rn) + 27n 3 operations.

When no linear constraints are present (m,, = 0), the implicit procedure requires less storage.

and work than the explicit procedure. However, as the proportion of linear constraints increases,

the explicit procedure eventually requires less work (in effkt, because the implicit )rocedure must

repeatedly multiply together the Householder transformations corresponding to linear constraints

in order to obtain the explicit matrix Q). We stress this point be(atise many optinization

problems cotain a signilicant proportion of linear constraints. Although it. is simpher to treat all

*" constlraiis as nonlinear fr eXpository q) r -osA (aswe L lave doet iii Seclion 3), their existence

should be consi(red wheli analyzing the work associatied with a practical algorithm.

To summarize, the procedure of Section 2 ensures the continuity properties of Z needed in

many constrained optimization algorithms, and can easily be extended to imply continuity of Q.

. Furthermoro, its cost is comparable to (or. even less than) that of the implicit procedure when

* the problem contains a significant prol)ortion of linear constraints.

' .
5

o*~
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Stewart and Margaret H. Wright.

Given a rectangular matrix A(x) that depends on the independent

variables x, many constrained optimization methods involve computations

with Z(x), a matrix whose columns form a basis for the null space of

A T(x). When A is evaluated at a given point, it is well known that a

suitable Z (satisfying AT Z - 0) can be obtained from standard matrix

factorizations. However, Coleman and Sorensen have recently shown that

standard orthogonal factorization methods may produce orthogonal bases that

do not vary continuously with x; they also suggest several techniques for

adapting these schemes so as to ensure continuity of Z in the neighbor-

hood of a given point.

This paper is an extension of an earlier note that defines the proce-

dure for computing Z. Here, we first describe how Z can be obtained by

updating an explicit QR factorization with Householder transformations.

The properties of this representation of Z with respect to perturbations

in A are discussed, including explicit bounds on the change in Z. We

then introduce regularized Householder transformations, and show that their

use implies continuity of the full matrix Q. The convergence of Z and

Q under appropriate assumptions is then proved. Finally, we indicate why

the chosen form of Z is convenient in certain methods for nonlinearly

constrained optimization.
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